
 1

Diagnostic Tests for a Class of Non-Deterministic

Finite State Machines

A. Ghedamsi, G. v. Bochmann, R. Dssouli and G. Luo

Université de Montréal
Département d'Informatique et de Recherche Opérationnelle

C.P.6128, Succ. "A", Montréal, Canada, H3C 3J7
Tel: (514) 343-6111 (3508), Fax: (514) 343-5834

Abstract

We propose a generalized diagnostic algorithm for the case where a software system

specification (implementation) is given in the form of an observably non-deterministic finite

state machines (ONFSM). Such an algorithm localizes the faulty transition in the system once

the fault has been detected. It generates, if necessary, additional diagnostic test cases which

depend on the observed symptoms and which permit the location of the detected fault. The

algorithm guarantees the correct diagnosis of any single (output or transfer) fault in a software

system represented by an ONFSM. A simple example is used to demonstrate the functioning of

the different steps of the proposed diagnostic algorithm.

Key words: Diagnostic, Test, Observably non-deterministic finite state machine, Symptom,

Conflict set, Candidate.

 2

Diagnostic Tests for a Class of Non-Deterministic
Finite State Machines

1. Introduction

Testing is an important step in the development cycle of any system (i.e. software,

communication protocol or hardware). A lot of research work has been directed towards such

tests [Fuji 91, More 90, Davi 88, Sabn 88, Ural 87, Nait 81, Chow 78, Gone 70]. At the same

time, in the software domain where a software system may be represented by an FSM model,

very little work has been done for diagnostic and fault localization problems [Ghed 92, Koka

90, Kore 88]. Diagnostic is a well documented subject in other areas, such as Artificial

Intelligence (AI), complex mechanical systems and medicine [Scho 76]. Therefore, most of the

concepts and terms used in this paper are imported from those domains.

In model-based diagnostics [Klee 87, Reit 87], we assume the availability of the physical

system (i.e, implementation) which can be observed, and its model (i.e, specification) from

which predictions can be made about its behavior. It is necessary to know how the system or

the machine under test is supposed to work in order to be able to know why it is not working

correctly.

Often the specification of a model-based system is described in a structured manner. Therefore,

a system is seen as a set of components connected to each other in a specific way. A

component is seen as one of many smaller sub-systems in a larger system. The behavior of the

larger system is, therefore, described in terms of its components behaviors. The structure

(organization) of a system can be defined as a relationship (i.e, physical connection, procedure

call,...) between the different components of the system. In order to diagnose this kind of

systems, models and their corresponding real systems are assumed to have the same

components and the same structure. Observations of inputs and outputs show how the system

is behaving, while expectations tell us how it is supposed to behave. The differences between

expectations and observations, which are called "symptoms", hint the existence of one or

several differences between the model and its system. In order to explain the observed

symptoms, a diagnostic process should be initiated. It consists mainly of performing the

following two tasks: the generation of candidates and the discrimination between candidates

[Klee 87].

 3

Task 1: Generation of candidates: This process uses the identified symptoms and the model

to deduce some diagnostic candidates. Each diagnostic candidate is defined to be the minimal

difference, between the model and its system, capable of explaining all symptoms. It indicates

the failure of one or several components in the system.

Task 2: Discrimination between candidates: Once the step of candidate generation

terminates, we often end up with a huge number of diagnostic candidates. To reduce their

number, two main techniques are used. The first one consists of the selection of some

additional new tests called "distinguishing tests" [Gene 84]. The second technique consists of

introducing new observation points in the implementation under investigation and executing

the same tests again.

We recall that in general, the diagnostic process is a very complicated task, specially for

diagnosing complicated systems. This complexity makes the achievement of the candidate

generation and discrimination tasks harder. In order to solve this problem, the use of fault

models is necessary (see for instance [Boch 91]). Given the system description, corresponding

fault models may be established using its different levels of abstraction. Some of these fault

models give all possible failures of each component in the system. They help to ease the

diagnostic procedure, specially by reducing the number of the different cases which have to be

considered, and hence, in reducing the number of diagnoses to be generated. It is important to

note that different fault models may be used during both tasks of the diagnostic process. In the

simplest case and for high level abstractions, the following fault model, based on the system

decomposition into components and connections, may apply during the candidate generation

phase. Each component may either be faulty or operating correctly [Klee 87]. On the other

hand, and for lower level abstractions (i.e. gates or transitions levels), different uses of precise

and more concrete fault models, are recorded in different areas such as the diagnostics of

hardware circuits (i.e, stuck at 0/1 fault models) [Stru 89, Klee 89]. These fault models may be

used during the phase of discrimination between candidates. In the software area and more

precisely for FSMs, another simple fault model, based on transfer and output faults of state

transitions, can be used for diagnosing software systems modelled by FSMs [Chow 78, Vuon

90, Ghed 92]. The same fault model is also used for the diagnostic approach presented in this

paper.

In [Ghed 92], we introduced a single fault diagnostic algorithm for systems represented by

deterministic FSMs. In this paper, we extend the applicability of our ideas to a class of non-

 4

deterministic systems. Such an extension is reached through the generalization of the

diagnostic algorithm to the case where systems implementations and their models are

represented by observably non-deterministic finite state machines (ONFSM) (see Definition 2).

The proposed algorithm has the ability of localizing a fault once it is detected by one or several

test cases possibly generated by one of the existing test selection methods.

The remainder of the paper is organized as follows. In Section 2, the observably non-

deterministic finite state machine (ONFSM) model and a corresponding fault model are

introduced. Section 3 includes all the details of an approach for the diagnostic of system

implementations represented by the ONFSM model . In Section 4, an application example

explaining the steps of the proposed diagnostic algorithm is provided. Section 5, finally,

contains a concluding discussion and points for future research.

2. Non-deterministic finite state machines

2.1 The non-deterministic finite state machines model

Definition 1: A non-deterministic FSM M is defined as a quadruple (S, I, Y, Trans) where:

S : Set of states of M. It includes an initial state s0,

I : Set of input symbols. It includes the reset input (r),

Y : Set of output symbols. It includes the null output (),
Trans: The transitions of M, which is a relation between present state and input on the one

hand, and next state and output on the other hand:

 Trans ⁄ (S x I) x (Y x S)

From the above definition, it is easily seen that for a single present state and input pair, the

relation Trans might have different corresponding pairs of outputs and next states. Couples

((s, a), (b, s')) � Trans are called transitions of the machine M. The notation s-a/b->s' is also

used to represent a transition. For each state in the machine, a reset transition is used to take

the machine to its initial state. It takes the symbol r as input and generates the symbol as

output.

Definition 2: An FSM is observably non-deterministic (ONFSM) [Cern 92] if and only if for

any given two transitions with equal input symbols and equal present states, if their

corresponding next states are different, then their corresponding output symbols must also be

 5

different. I.e, if s-x/y'->s' and s-x/y"->s" are two transitions in an ONFSM M, and s' � s", then

y' � y".

Definition 2 defines a special class of non-deterministic FSMs. It consists of those machines

where all transitions with the same starting state have different (input/output) labels. For the

rest of the paper, we will deal only with machines in this class. We also assume that the

ONFSMs are completely specified and do not include internal transitions. Therefore, for every

input symbol i � I, every state in the ONFSM has at least one transition with that input. Finally

and in order to deal with null outputs (i.e.), we assume that the output is determined by the

application of an input and the non-observation of any output during a predetermined lapse of

time. After deducing that a null output has occurred, the next input is allowed to be applied.

A graphic representation of an ONFSM example, in the form of a State transition diagram,

is given in Figure 1.

S1

S2

S0

t2: a/d
t1: a/e

t4: a/e

t6: a/

t5: b/e

t9: b/e

t3: b/

t8: a/e

t7: b/e

S3

S4

t11: b/ t10: a/e

t12: b/e

Figure 1: A state transition diagram of an ONFSM

2.2 The ONFSM fault model

The ONFSM fault model is based on errors and faults made on labeled transitions. Some

of these faults, which are essential for the ONFSM-based diagnostic approach discussed in

Section 3, are defined as follows:

Definition 3: Output fault: We say that a transition has an output fault if, once executed, the

implementation provides an output different from the one specified by the output function.

 6

An implementation has a single output fault if, one and only one of its transitions has an

output fault.

Definition 4: Transfer fault: We say that a transition has a transfer fault if, once executed, the

implementation enters a different state than specified by the Next-state function.

An implementation has a single transfer fault if, one and only one of its transitions has a

transfer fault.

For our diagnostic approach presented in the following section, we assume the following fault

model: the IUT may have a single output fault or a single transfer fault in one of its transitions.

In other words, both the specification and the implementation are assumed to be the same with

the possibility of having one difference (i.e, the output or the reached state) in at most one of

their transitions.

3. The diagnostic approach

The following algorithm consists of diagnosing (with respect to its specification ONFSM) an

IUT ONFSM for possible faulty transitions. Its main purpose is to identify the faulty transition

and to determine the type of its fault (i.e. output or transfer). This work is mainly executed

within Step 5 and Step 6 of the following algorithm. In particular, Step 5 might end up with

different diagnostic candidates. In such a case and in Step 6, additional diagnostic tests should

be selected in Step 6 in order to be able to isolate the faulty transition and more precisely to

know to which state (in case of a transfer fault) that transition has transferred.

ALGORITHM:

Step 1: Generation of expected outputs

We assume that a test suite "TS" is given; it may have been obtained by one of the existing

test selection methods [Luog 92]. The test suite consists of a number of test cases which are
sequences of input symbols. We write TS = { tc1, ..., tcp}, where each tci is a test case.

Since we are dealing with non-deterministic machines, a set of valid sequences of outputs is

expected for each test case in the given test suite. Such a set covers all paths (sequences of

transitions) which might be executed once the corresponding sequence of input symbols is
applied. Therefore, if a test case tci consists of mi inputs ii,1ii,2...ii,mi, the corresponding set of

 7

sequences of possible expected outputs is written as Oi = { o1
i, ..., oq

i}, where ok
i =

ok
i,1ok

i,2...ok
i,mi and ok

i,j (k = 1, ..., q) is expected after input ii,j.

Step 2: Generation of observed outputs

In order to be able to observe output sequences that may be produced by a given

implementation

for a given input test case, we assume that the IUT satisfies a fairness property. Such a

property states that if a test case is applied repeatedly often enough, all corresponding

implementation paths (sequences of transitions) will be executed. Therefore, for each test case
tci, we assume that a corresponding complete set of sequences of outputs, "set of observed

outputs", is generated by the IUT. It is written as: Ôi = { ô1
i, ..., ôr

i}, where ôk
i =

ôk
i,1ôk

i,2...ôk
i,mi (k = 1, ..., r).

Step 3: Generation of symptoms

Compare outputs in the observed sets of output sequences with the corresponding sets of
expected output sequences and identify all symptoms. Any difference (Oi � Ôi) represents a

symptom.

Definition 5: The transition Tk

i,j of the specification where the symptom (Oi � Ôi) (more

precisely (ok
i,j � ôk

i,j)) has been observed, is called a symptom transition. The faulty output

corresponding to a symptom is called a symptom output. If we have the same symptom

transition for all symptoms, that transition is called the unique symptom transition (ust). The

observed output generated by the ust, is called the unique symptom output (uso).

Note: In order to continue the diagnostic process, different approaches might be used

depending on whether the single or the multiple fault hypothesis is made. In the following, we

make the assumption that the IUT has a single fault, either output or transfer.

Step 4: Generation of conflict sets
Algorithm: For each symptom (Oi � Ôi), determine its corresponding conflict set. A conflict

set for a given symptom is defined to be the set of transitions which are supposed to participate

(through their execution) in the generation of the symptom; therefore, one of these transitions

must be faulty. The occurrence of a fault in one of the implementation transitions might change

the observed set of output sequences, which corresponds to a given test case. As a result, new

output sequences might be observed, while other expected sequences might be missed. In the

following, we present a new algorithm for the conflict set generation, where we consider the
different possible inclusion relations the sets Oi and Ôi might have.

 8

 If (Ôi 1 Oi) then

 Plusi = Oi - Ôi

 Checkseti = Ôi

 ComputeConf(Confi, Plusi, Checkseti, Oi)

 Else If (Oi 1 Ôi) then

 Plusi = Ôi - Oi

 Checkseti = Oi

 ComputeConf(Confi, Plusi, Checkseti, Oi)

 Else
 Plusi = Oi - Ôi

 Checkseti = Ôi - Oi

 ComputeConf(Confi, Plusi, Checkseti, Oi)

 Procedure ComputeConf(Confi, Plusi, Checkseti, Oi)

 Confi = �

 Repeat

 Forall [Plusi do {i.e, = x1x2x3....xn }

 R := ´
 Forall ’ [Checkseti do {i.e, ’ = x’1x’2x’3....x’n }

 If (R < (Common (, ’))) then {is R is subsequence of Common (, ’) ?}
 {i.e, if = 1.xh+1.2 and ’ = 1.x’h+1.3,
 where xh+1 � x’h+1, then Common (, ’) = 1 }

 R := Common (, ’) {R is affected the largest common subsequence
 f := ’ of and any other sequence ’ in Checkseti}

 Endforall {i.e, R = y1y2y3....ym , where

 m < n, yi = xi = x’i for i = 1, 2, ..., m,

 R := R.ym+1 ym+1 = xm+1 if [Oi, otherwise ym+1 = x’m+1}

 Conf := {t1, t2, t3,tm+1} {Conf is determined through the use of the output

 sequence R and the corresponding input subsequence of tci}

 {tm+1 is a symptom transition}

 Plusi := Plusi -

 Forall " [Plusi do

 If (Common (", f) = Common (, f)) then

 Plusi := Plusi - "

 Endforall
 Endforall
 If (Confi (Conf � �) then

 Confi := Confi (Conf

 Else Confi := Conf

 Until (Plusi = �)

Each execution of ComputeConf generates the minimal conflict set for the corresponding

considered symptom.

 9

Step 5: Generation of diagnostic candidates and their diagnoses

Diagnostic candidates are transitions which are suspected to be faulty. Therefore, each one of

them should have a non empty intersection with each conflict set. It also has to be consistent

with all observations.

Step 5A: Generation of the initial tentative candidate set

Algorithm: The initial tentative candidate set "ITC" will be formed by the intersection of all
conflict sets. Each element Tk in ITC represents a tentative candidate transition (with an output

or a transfer fault) which may explain all symptoms.

Step 5B: The FTC, the ending state and the ustset sets

Algorithm: For the generated initial tentative candidate set ITC, if there is a unique symptom

transition "ust", it will be contained in the ITC. In that case, we split the ITC into the set

"ustset" which will initially contain the ust and the final tentative candidates set for transitions

with transfer faults "FTCtr" which will contain the rest of transitions in ITC. Otherwise, the

full ITC set forms the FTCtr set and the ustset is kept empty.

If the ust is contained in the ustset, it will be processed as follows. All test cases in the initially

given test suite "TS" are scanned for transitions that are equal to the ust. If for all found

transitions their corresponding observed outputs is equal to the uso and for the remaining

transitions in the corresponding test cases all observed and expected outputs are equal, which

means the ust explains all observations, then the ust is considered a diagnostic candidate for an

output fault.

 Procedure ust-processing (ustset)
 Forall tcm �TS DO

 Forall im,n � tcm DO {if for tcm corresponds r paths, then Tk
m,n is the

 IF (Tk
m,n = ust) THEN transition which corresponds to the n-th input in tcm

 IF (ôk
m,n <> uso) THEN and the n-th output in the k-th sequence of Ôm}

 ustset = �; exit{the ust is not a diagnostic candidate}

 ELSE IF ok
m,n+l <> ôk

m,n+l THEN {l =1, 2, ..., im where n +im is the

 length of the test case tcm}

 ustset = �; exit
 ENDForall
 ENDForall

For each transition Tk in the FTCtr, we compute the set of all faulty transfer states called

"EndStatesk", to which Tk might transfer. For each transition, we consider all states in the

machine, with the exception of the expected NextState of Tk, one at a time. For each state s

under consideration, s will be included in EndStatesk, if under the assumption that s is the

 10

NextState of Tk, the expected and observed outputs are equal for all succeeding transitions in

all test cases.

Procedure findendingstates (FTCtr);
 Forall Tk in FTCtr Do {Tk is the k-th transition in FTCtr }

 EndStatesk := � {EndStatesk is the set of all states to which Tk might transfer }

 Forall state s � S and s � NextState(Tk) Do {NextState is a function which offers the next state

 flag := true for any transition in the specification machine}

 Forall tcm �TS Do {if for tcm corresponds r paths, then Tk
m,n is the

 Forall im,n � tcm Do transition which corresponds to the n-th input in tcm

 IF (Tk
m,n = Tk) THEN and the n-th output in the k-th sequence of Ôm}

 NextState’(Tk
m,n) = s; let the ending state of in the specification be s

 Apply the test case tcm to the modified specification

 IF (newly set of expected output sequences <> set of observed outputs)
 THEN flag := false; exit
 ENDForall
 ENDForall
 IF (flag = true) THEN
 EndStatesk := EndStatesk s

 ENDForall
 ENDForall

Step 5C: Identification of diagnostic candidates and generation of diagnoses

Algorithm: In this step we remove all correct (i.e. transitions with empty ending state sets or

empty outputs sets) transitions from the final tentative candidate set. All transitions in the

resulting "DCtr" set (if not empty) are diagnostic candidates with transfer faults. For each
transition Tk in the DCtr and for each state sik in the EndStatesk, a diagnose, stating that Tk

might transfer to state sik, is generated. An extra diagnose, stating that the ust might have an

output fault, is also generated, if the ustset is not empty.

Step 6: Additional diagnostic tests

Depending on the results of the previous steps, the following different possibilities might be

present.

 Case 1: The ustset contains the ust transition and the DCtr is empty. In such a case, the

ust is the faulty transition with the output fault uso and no further diagnostic tests are required.

 Case 2: The ustset is empty and the DCtr is a singleton with a corresponding singleton

ending state set. In such a case, the only transition of DCtr has a transfer fault to the state in the

corresponding ending state set. No further tests are required.

 11

 Case 3: The ustset is empty and the DCtr is a singleton with a corresponding ending

state set with more than one element, or the DCtr has more than one element. Therefore, each

element in DCtr might be the faulty transition with a transfer fault. In such a case, we should

process the elements of DCtr to derive further tests with the purpose of identifying the faulty

transition and the state to which it transfers.

Algorithm for Case 3:
For each transition Tk in DCtr, additional test cases have to be selected and executed, in order

to be able to know exactly to which state it transfers. These test cases should have the ability of

distinguishing between the different states contained in the corresponding ending state set
"EndStatesk" and possibly the correct ending state of the transition. Therefore, a "limited

characterization set" Wk has to be computed for the states in EndStatesk and the correct

state. A limited characterization set is different from the characterization set defined in [Chow

78], since it concerns only a subset of the states rather than the whole set of states in the

machine. It is formed by sequences of inputs such that if they are applied to the machine in one
of the states in EndStatesk, some produced outputs will be different from the outputs obtained

if the same input sequences were applied to the machine in any other state of EndStatesk or the

correct state. Each of these additional test cases is a concatenation of an input sequence, called
transfer sequence, required to take the machine from its initial state to the starting state of Tk,

the input for Tk and a sequence of inputs from the Wk.

In order to avoid any ambiguities, the transfer sequence and the limited characterization set

should be chosen in such a manner that they do not involve any candidate transition in the

DCtr set. Figure 2 illustrates the progressive construction of the additional test cases needed to

distinguish the faulty transition from the rest of the diagnostic candidates of DCtr.

The construction of the additional tests is progressive because if the fault is located, the rest of

the additional tests need not be generated, since we assume the single fault hypothesis. If some

of the generated tests are already included in the initially given test suite, this will be taken into

consideration for the analysis of the obtained outputs, but they need not be applied again to the

IUT. If the application of these additional tests generates the expected outputs, the transition is

declared correct and is removed from the corresponding diagnostic candidates set. When a

faulty transition is found, the analysis of observed outputs identifies the faulty transfer of that

transition and the search is stopped.

 Case 4: The ustset contains the ust transition and DCtr is not empty. In such a case, we

first check the ust transition by generating for it an additional test case. Such a test case should

 12

be selected with the restriction that it does not imply the execution of any transition in DCtr. If

its application generates the expected set of output sequences, then the ust is declared correct

and the search for the faulty transition in DCtr has to be done as in Case 3. Otherwise, ust is the

transition with an output fault and the search is stopped.

S0

ct1
ct2

P

P

P 1

2

k

ss

ss

ss

es

es

es1 1

2

2

k
k

. . . .

.

.

.

.

.

.

. . . .

ctk

ct1

ctk

ct2

es

ww

es

. . . .

2,1

. . . .

eses1,1
. . . . 1,m1

2,m2

. . . .esk,1
es

k,mk

w
1,n1

2,n2

wk,nk

w
1,1

2,1

wk,1

Notes:
1) s 's, ss 's, es 's and es 's are states in the machine.
2) ct 's are candidate transitions
3) each P is a transfer sequence from the initial state to the starting state of ct
4) The input sequence in each path in the tree represents a possible additional
diagnostic test for a specific candidate transition and a specific ending state.
5) Solid lines transitions indicate the predicted behavior of the diagnostic candidates
(no fault case).
6) Each subtree starting with P represents additional tests for transition tc
7) The set of sequences { w . . . w } distinguishes between the states es . . . es
in the EndStates for candidate transition ct

i

i i

i i

i
i

i

i,1 i,ni i,mii,1
i

i,j

i

Figure 2 : Construction of additional diagnostic tests

The above cases are covered by the following algorithm:

 IF (ustset = {ust} AND DCtr = �
 THEN
 Print "The ust transition has an output fault"
 ELSE IF ustset = � AND DCtr = T1 AND EndStates1 = s1

 THEN
 Print "T1 is the faulty transition with transfer fault to s1"

 13

 ELSE IF ustset = � AND DCtr = T1 , ..., Td

 THEN
 Findtransferfault (DCtr)
 ELSE IF ustset = {ust} AND DCtr = T1 , ..., Td

 select test cases for the ust;
 apply these tests to the IUT;
 IF (observed set of output sequences<> expected set of
 output sequences)
 THEN
 Print "The ust has an output fault and all other
 transitions are correct"
 ELSE Findtransferfault (DCtr)

 Procedure Findtransferfault (DCtr)
 flag := false; k := 1;
 REPEAT Tk is a transition in DCtr

 select diagnostic tests for Tk ;

 apply these tests to the implementation;
 IF (observed set of output sequences <> expected set of output sequences)
 THEN
 flag := true;
 Print "Tk has a transfer fault. Its ending state is deduced from the analysis of the

 observed outputs. All other transitions are correct"
 ELSE Print "Tk is correct"
 k := k + 1
 UNTIL (flag = true)

4. An application example

Suppose that the following initial test suite for the ONFSM specification shown in Figure 1, is

given:

TS = {rabb, rabaa, rbabab}

Steps 1 and 2: The application of this TS to the specification of Figure 1 and the

implementation of Figure 3, yields the expected and observed output sequences, as shown in

Table 1.

 14

S1

S2

S0

t2: a/d t1: a/e

t4: a/e

t6: a/

t5: b/e

t9: b/e

t3: b/

t8: a/e

t7: b/e

S3

S4

t11: b/
Faulty t10: a/e

t12: b/e

Figure 3: A faulty implementation I

 tc1 r a b b

Corresp. spec. seqs of transitions {tr t1 t7 t5 , tr t2 t9 t11 , tr t2 t9 t12}

Expected sequences of outputs { e e e , d e , d e e}

Observed sequences of outputs { e e e , d e , d e e}

 tc2 r a b a a

Corresp. spec. seqs. of transitions { tr t1 t7 t4 t4 , tr t2 t9 t10 t6}

Expected sequences of outputs { e e e e , d e e }

Observed sequences of outputs { e e e e , d e e e}

 tc3 r b a b a b

Corresp. spec. seqs of transitions { tr t3 t1 t7 t4 t5 , tr t3 t2 t9 t10 t7}

Expected sequences of outputs { e e e e , d e e e}

Observed sequences of outputs { e e e e , d e e e}

Table 1: Test cases and their outputs

 15

In Table 1, a reset transition tr is assumed to be available for both the specification and the

implementation. We use the symbol "r" to denote the input for such a transition and the symbol

"" to denote its output.

Step 3: A difference between observed and expected outputs is detected for test cases tc2.

Therefore, the symptom is:
 Symp2 = (O2 � Ô2)

Step 4: Corresponding to the above symptom, the application of the algorithm in Step 3 will

progress as follows:
 Plus2 = O2 - Ô2 = {dee} Checkset2 = Ô2 - O2 = {deee}

The comparison of the above two sets implies the following conflict set:
 Conf2 = {t2, t9, t10, t6}

Conf2 consists of all those specification transitions which can be identified by the input

sequence tc2 and the specification output sequence in Plus2. Since there is only one conflict

set, t6 is at the same time a symptom transition and the ust transition.

Step 5A: Since there is only one conflict set, no intersection is needed. The initial set of

tentative candidates is the following:

 ITC = {t2, t9, t10, t6}

Step 5B: Generate the corresponding FTCtr and the ustset sets:

 FTCtr = {t2, t9, t10}, ustset = {t6}

The processing of the above sets and the computation of the ending state sets for the transitions

in FTCtr leads to:

 ustset = {t6},

 EndStates[t2] = {}, EndStates[t9] = {}, EndStates[t10] = {s1, s3}

Step 5C: The transitions with empty ending state sets are correct, therefore they are removed

from the final tentative candidate set. The resulting diagnostic candidates sets are the

following:

 DCtr = {t10}, ustset = {t6},

 16

With the use of the ending state sets and the ustset generated in Step 5B, the following

diagnoses are deducted:

 Diag1: t6 might have an output fault of e instead of .

 Diag2: t10 might transfer to state s0 instead of state s2.

 Diag3: t10 might transfer to state s3 instead of state s2.

Step 6: In order to reduce the space of the resulted diagnoses, additional diagnostic tests have

to be selected. Since output faults are in general easier to be tested and require less tests, we
start with Diag1. A possible test for t6 is "tca1 = raa". Since the corresponding expected and

observed sets of outputs are equal (i.e., Oa1 = Ôa1 = {de, e}), t6 is confirmed to be correct

and t10 is confirmed to have a transfer fault. But in order to know to which state t10 transfers,

another test is needed. A possible test for distinguishing between the two states s1 and s3 is

"tca2 = rabaaa". The application of such a test case generates the following set of output

sequences: {eeeee, deee}. Such a result confirms that t10 transfers to state s3 and not to

state s1.

5. Concluding discussion

In this paper, we extended the applicability of the diagnostic approach proposed in [Ghed 92]

to a new class of non-deterministic systems. We assume that the software system specifications

and implementations can be represented by observably non-deterministic finite state machines.

For a ONFSM, a sequence of input and one of its corresponding output sequences identify

exactly a unique path (a specific sequence of transitions) in the machine. Therefore, it will be

relatively easy to localize the fault, since we need to deal only with that specific group of

transitions where the fault has been detected. On the other hand and if the general non-

deterministic FSM model is used, multiple paths can correspond to a single pair of input and

output sequences. such a multiplicity of paths makes the fault localization problem even

harder, since for a single observed symptom, the search for the fault will be spread to a set of

paths rather than a single one.

Most steps of the proposed algorithm were modified (with respect to [Ghed 92]) to

accommodate the newly defined ONFSM model. In such a model, different paths might be

executed by a single input test sequence. The occurrence of a fault in one of the

implementation transitions might modify the observed set of output sequences, which

corresponds to a given test case. As a result, new output sequences might be observed, while

other expected sequences might be missed. To deal with such a problem, we introduced a new

 17

algorithm for the conflict set generation, where we consider the different possible inclusion
relations the sets Oi and Ôi might have. Similar changes were also included in the remaining

steps of the global diagnostic algorithm.

Many important questions are left for future work, such as the diagnostic of systems which are

represented by general non-deterministic FSMs. Another important question, is the diagnostic

of systems, represented by different models (i.e., FSMs, communicating FSMs, extended

FSMs,...), and which allow multiple faults. Such a question is known to be a very difficult one.

A possible starting point is to try to solve it for at least some special classes of multiple faults

such as the presence of two (output plus transfer) faults in the same transition of the

implementation machine.

Acknowledgments: The authors would like to thank F. Khendek for useful discussions on the

NFSMs model used in the paper. They also would like to thank R. Gotzhein and R. Groz for

their useful comments. This work was partly supported by the Natural Sciences and

Engineering Research Council of Canada, the Ministry of Education of Québec and the

IDACOM-NSERC-CWARC Industrial Research Chair on Communication Protocols.

References

[Boch 91] G.v. Bochmann, R. Dssouli, A. Das, M. Dubuc, A. Ghedamsi, and G. Luo,

"Fault models in testing", Invited paper in 4-th IWPTS, Leidschendam, Holland,
15 - 17 Oct. 1991.

[Cern 92] E. Cerny, Verification of I/O trace set inclusion for a class of non-deterministic
finite state machines, submitted to CAV’92, Montréal, Canada.

[[Chow 78] T.S. Chow, "Testing Design Modelled by Finite-State Machines", IEEE Trans.
S.E. 4, 3, 1978.

[Davi 88] R. Davis, and W. Hamscher, "Model-based reasoning: Troubleshooting", in:
Exploring Artificial Intelligence, edited by Shrobe, H. E. and the American
Association for Artificial Intelligence, pp. 297-346, Morgan Kaufman, 1988.

[Fuji 91] S. Fujiwara, G.v. Bochmann, F. Khendek, M. Amalou, and A. Ghedamsi, "Test
selection based on finite state models", IEEE Trans. on Software Engineering,
Vol. 17, No. 6, June 1991, pp. 591-603.

[Gene 84] M.R. Genesereth, "The use of design descriptions in automated diagnosis",
Artificial Intelligence 24(3), 1984, pp. 411-436.

[Ghed 92] A. Ghedamsi and G.v. Bochmann, "Test result analysis and diagnostics for finite
state machines", accepted at the 12-th international conference on distributed
systems, Yokohama, Japan, June 9-12, 1992.

[Gone 70] G. Goenenc, “A method for the design of fault detection experiments“, IEEE
Trans. Computer, Vol. C-19, pp. 551-558, June 1970.

[Klee 87] J. de Kleer, and B.C. Williams, "Diagnosing multiple faults", Artificial
Intelligence 32(1), 1987, pp. 97-130.

 18

[Koka 90] K.C. Ko, "Protocol test sequence generation and analysis using AI techniques",
Master thesis, Dept of Comp. Sci., UBC, Jul. 1990.

[Kore 88] B. Korel, "PELAS-Program error-locating assistant system", IEEE Trans. on
Software Engineering, Vol. 14, No. 9, September 1988.

[Luog 92] G. Luo, G.v. Bochmann, M. Yao and A. Ghedamsi, "Test Generation based on
Nondetermistic Finite State Machine", in preparation.

[More 90] L. J. Morell, "A theory of fault based testing", IEEE Trans. on Software
Engineering, Vol. 16, No. 8, August 1990.

[Nait 81] S. Naito and M. Tsunoyama, "Fault Detection for Sequential Machines by
Transition-Tours", Proc. of FTCS (Fault Tolerant Computing Systems), pp.238-
243, 1981.

[Reit 87] R. Reiter, "A theory of diagnosis from first principles", Artificial Intelligence
32(1), 1987, pp. 57-96.

[Sabn 88] K.K. Sabnani and A.T. Dahbura, "A protocol Testing Procedure", Computer
Networks and ISDN Systems, Vol. 15, No. 4, pp. 285-297, 1988.

[Scho 76] E.H. Shortlife, "Computer-based Medical Consultations : MYCIN", Elsevier,
New-York, 1976.

[Stru 89] P. Struss, and O. Dressler, "Physical Negation - Integrating Fault Models into
the General Diagnostic Engine", Proceedings IJCAI, Detroit - Michigan, 1989,
pp. 1318-1323.

[Ural 87] H. Ural, "A Test Derivation Method for Protocol Conformance Testing", Proc.
of the 7th IFIP Symposium on Protocol Specification, Testing and Verification,
Zurich, May 5-8 1987.

[Vuon 90] S.T. Vuong and K.C. Ko, "A novel approach to protocol test sequence
generation", IEEE Global telecomm. conference and exhibition, San Diego,
California, Dec. 2-5, 1990, vol. 3, 904.1.1 - 904.1.5.

